Section 3.4

Math 231

Hope College

- A subset *S* of a vector space *V* is called a **basis** of *V* if *S* is a linearly independent, spanning set for *V*.
- Many familiar vector spaces like ℝ^m, P, and M_{m,n}(ℝ) have standard bases, but sometimes it will be useful to consider other bases, as well. We will also consider the problem of finding a basis for a given subspace of one of these spaces.

- A subset *S* of a vector space *V* is called a **basis** of *V* if *S* is a linearly independent, spanning set for *V*.
- Many familiar vector spaces like ℝ^m, P, and M_{m,n}(ℝ) have standard bases, but sometimes it will be useful to consider other bases, as well. We will also consider the problem of finding a basis for a given subspace of one of these spaces.

Theorem 3.34:

- Let S = {x₁,..., x_n} be a subset of ℝ^m and let A be the m × n matrix whose columns are the vectors in S. The set S is basis of ℝ^m if and only if and rref (A) = I_n, (in which case n = m).
- 2 Every basis of \mathbb{R}^m has *m* elements.
- Let S = {x₁,..., x_m} be a subset of ℝ^m and let A be the m × m matrix whose columns are the vectors in S. The set S is basis of ℝ^m if and only if det(A) ≠ 0.

Theorem 3.34:

- Let S = {x₁,..., x_n} be a subset of ℝ^m and let A be the m × n matrix whose columns are the vectors in S. The set S is basis of ℝ^m if and only if and rref (A) = I_n, (in which case n = m).
- 2 Every basis of \mathbb{R}^m has *m* elements.
- Let S = {x₁,..., x_m} be a subset of ℝ^m and let A be the m × m matrix whose columns are the vectors in S. The set S is basis of ℝ^m if and only if det(A) ≠ 0.

Example: Is $\{\langle 1, 3, 2 \rangle, \langle 2, 1, 0 \rangle, \langle 1, -1, 0 \rangle\}$ a basis of \mathbb{R}^3 ?

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ● ④ ● ●

- If S is linearly independent, but every set T with S ⊂ T ⊆ V is linearly dependent, then S is a basis of V. In other words, a maximal linearly independent subset of V is a basis of V.
- If S spans V, but every subset T ⊂ S does not span V, then S is a basis of V. In other words, a minimal spanning set of V is a basis of V.
- S is a basis of V if and only if every vector in V can be written uniquely as a linear combination of vectors in S.

- If S is linearly independent, but every set T with S ⊂ T ⊆ V is linearly dependent, then S is a basis of V. In other words, a maximal linearly independent subset of V is a basis of V.
- If S spans V, but every subset T ⊂ S does not span V, then S is a basis of V. In other words, a minimal spanning set of V is a basis of V.
- S is a basis of V if and only if every vector in V can be written uniquely as a linear combination of vectors in S.

- If S is linearly independent, but every set T with S ⊂ T ⊆ V is linearly dependent, then S is a basis of V. In other words, a maximal linearly independent subset of V is a basis of V.
- If S spans V, but every subset T ⊂ S does not span V, then S is a basis of V. In other words, a minimal spanning set of V is a basis of V.
- S is a basis of V if and only if every vector in V can be written uniquely as a linear combination of vectors in S.

- If S is linearly independent, but every set T with S ⊂ T ⊆ V is linearly dependent, then S is a basis of V. In other words, a maximal linearly independent subset of V is a basis of V.
- If S spans V, but every subset T ⊂ S does not span V, then S is a basis of V. In other words, a minimal spanning set of V is a basis of V.
- S is a basis of *V* if and only if every vector in *V* can be written uniquely as a linear combination of vectors in *S*.

Theorem 3.39: Let *V* be a vector space, and assume that *V* has a spanning set *S* with *m* elements. Let $T \subseteq V$ be a (finite or infinite) set with *n* elements where n > m. Then *T* is linearly dependent.

ヘロト ヘ戸ト ヘヨト ヘヨト

Theorem 3.39: Let *V* be a vector space, and assume that *V* has a spanning set *S* with *m* elements. Let $T \subseteq V$ be a (finite or infinite) set with *n* elements where n > m. Then *T* is linearly dependent.

Theorem 3.40: Let V be a vector space. Then every basis of V has the same number of elements.

- Let V be a vector space. If V has a basis with a finite number n elements, we say that n is the dimension of V. In this case, we say V is finite dimensional, and we write dim V = n. If V does not have a finite basis, we say that V is infinite dimensional, and we write dim V = ∞.
- The dimensions of some vector spaces:

 $\dim \mathbb{R}^m =$ $\dim \mathcal{P} =$ $\dim \mathcal{P}_n =$ $\dim M_{m,n}(\mathbb{R})$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- Let V be a vector space. If V has a basis with a finite number n elements, we say that n is the dimension of V. In this case, we say V is finite dimensional, and we write dim V = n. If V does not have a finite basis, we say that V is infinite dimensional, and we write dim V = ∞.
- The dimensions of some vector spaces:

 $\dim \mathbb{R}^m =$ $\dim \mathcal{P} =$ $\dim \mathcal{P}_n =$ $\dim M_{m,n}(\mathbb{R}) =$

ヘロン 人間 とくほ とくほ とう

- Let V be a vector space. If V has a basis with a finite number n elements, we say that n is the dimension of V. In this case, we say V is finite dimensional, and we write dim V = n. If V does not have a finite basis, we say that V is infinite dimensional, and we write dim V = ∞.
- The dimensions of some vector spaces:

```
\dim \mathbb{R}^m = m\dim \mathcal{P} =\dim \mathcal{P}_n =\dim M_{m,n}(\mathbb{R}) =
```

ヘロト ヘ団ト ヘヨト ヘヨト

- Let V be a vector space. If V has a basis with a finite number n elements, we say that n is the dimension of V. In this case, we say V is finite dimensional, and we write dim V = n. If V does not have a finite basis, we say that V is infinite dimensional, and we write dim V = ∞.
- The dimensions of some vector spaces:

 $\dim \mathbb{R}^m = m$ $\dim \mathcal{P} = \infty$ $\dim \mathcal{P}_n =$ $\dim M_{m,n}(\mathbb{R}) =$

- Let V be a vector space. If V has a basis with a finite number n elements, we say that n is the dimension of V. In this case, we say V is finite dimensional, and we write dim V = n. If V does not have a finite basis, we say that V is infinite dimensional, and we write dim V = ∞.
- The dimensions of some vector spaces:

```
\dim \mathbb{R}^m = m\dim \mathcal{P} = \infty\dim \mathcal{P}_n = n + 1\dim M_{m,n}(\mathbb{R}) =
```

- Let V be a vector space. If V has a basis with a finite number n elements, we say that n is the dimension of V. In this case, we say V is finite dimensional, and we write dim V = n. If V does not have a finite basis, we say that V is infinite dimensional, and we write dim V = ∞.
- The dimensions of some vector spaces:

```
\dim \mathbb{R}^{m} = m\dim \mathcal{P} = \infty\dim \mathcal{P}_{n} = n + 1\dim M_{m,n}(\mathbb{R}) = mn
```