Section 3.4

Math 231

Hope College

Bases

- A subset S of a vector space V is called a basis of V if S is a linearly independent, spanning set for V.
- Many familiar vector spaces like $\mathbb{R}^{m}, \mathcal{P}$, and $M_{m, n}(\mathbb{R})$ have standard bases, but sometimes it will be useful to consider other bases, as well. We will also consider the problem of finding a basis for a given subspace of one of these
spaces.

Bases

- A subset S of a vector space V is called a basis of V if S is a linearly independent, spanning set for V.
- Many familiar vector spaces like $\mathbb{R}^{m}, \mathcal{P}$, and $M_{m, n}(\mathbb{R})$ have standard bases, but sometimes it will be useful to consider other bases, as well. We will also consider the problem of finding a basis for a given subspace of one of these spaces.

Theorem 3.34:
(1) Let $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ be a subset of \mathbb{R}^{m} and let A be the $m \times n$ matrix whose columns are the vectors in S. The set S is basis of \mathbb{R}^{m} if and only if and $\operatorname{rref}(A)=I_{n}$, (in which case $n=m$).
(2) Every basis of \mathbb{R}^{m} has m elements.
(3) Let $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$ be a subset of \mathbb{R}^{m} and let A be the $m \times m$ matrix whose columns are the vectors in S. The set S is basis of \mathbb{R}^{m} if and only if $\operatorname{det}(A) \neq 0$.

Bases in \mathbb{R}^{m}

Theorem 3.34:
(1) Let $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ be a subset of \mathbb{R}^{m} and let A be the $m \times n$ matrix whose columns are the vectors in S. The set S is basis of \mathbb{R}^{m} if and only if and $\operatorname{rref}(A)=I_{n}$, (in which case $n=m$).
(2) Every basis of \mathbb{R}^{m} has m elements.
(3) Let $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$ be a subset of \mathbb{R}^{m} and let A be the $m \times m$ matrix whose columns are the vectors in S. The set S is basis of \mathbb{R}^{m} if and only if $\operatorname{det}(A) \neq 0$.
Example: Is $\{\langle 1,3,2\rangle,\langle 2,1,0\rangle,\langle 1,-1,0\rangle\}$ a basis of \mathbb{R}^{3} ?

Properties of Bases

Theorem 3.38: Let S be a subset of a vector space V.
(1) If S is linearly independent, but every set T with $S \subset T \subseteq V$ is linearly dependent, then S is a basis of V. In other words, a maximal linearly independent subset of V is a basis of V.
(2) If S spans V, but every subset $T \subset S$ does not span V, then S is a basis of V. In other words, a minimal spanning set of V is a basis of V.
(3) S is a basis of V if and only if every vector in V can be written uniquely as a linear combination of vectors in S.

Properties of Bases

Theorem 3.38: Let S be a subset of a vector space V.
(1) If S is linearly independent, but every set T with $S \subset T \subseteq V$ is linearly dependent, then S is a basis of V. In other words, a maximal linearly independent subset of V is a basis of V.
(2) If S spans V, but every subset $T \subset S$ does not span V, then S is a basis of V. In other words, a minimal spanning set of V is a basis of V.
(3) S is a basis of V if and only if every vector in V can be written uniquely as a linear combination of vectors in S.

Properties of Bases

Theorem 3.38: Let S be a subset of a vector space V.
(1) If S is linearly independent, but every set T with $S \subset T \subseteq V$ is linearly dependent, then S is a basis of V. In other words, a maximal linearly independent subset of V is a basis of V.
(2) If S spans V, but every subset $T \subset S$ does not span V, then S is a basis of V. In other words, a minimal spanning set of V is a basis of V.
(3) S is a basis of V if and only if every vector in V can be written uniquely as a linear combination of vectors in S.

Properties of Bases

Theorem 3.38: Let S be a subset of a vector space V.
(1) If S is linearly independent, but every set T with $S \subset T \subseteq V$ is linearly dependent, then S is a basis of V. In other words, a maximal linearly independent subset of V is a basis of V.
(2) If S spans V, but every subset $T \subset S$ does not span V, then S is a basis of V. In other words, a minimal spanning set of V is a basis of V.
(3) S is a basis of V if and only if every vector in V can be written uniquely as a linear combination of vectors in S.

Properties of Bases

Theorem 3.39: Let V be a vector space, and assume that V has a spanning set S with m elements. Let $T \subseteq V$ be a (finite or infinite) set with n elements where $n>m$. Then T is linearly dependent.

Properties of Bases

Theorem 3.39: Let V be a vector space, and assume that V has a spanning set S with m elements. Let $T \subseteq V$ be a (finite or infinite) set with n elements where $n>m$. Then T is linearly dependent.

Theorem 3.40: Let V be a vector space. Then every basis of V has the same number of elements.

Dimension

- Let V be a vector space. If V has a basis with a finite number n elements, we say that n is the dimension of V. In this case, we say V is finite dimensional, and we write $\operatorname{dim} V=n$. If V does not have a finite basis, we say that V is infinite dimensional, and we write $\operatorname{dim} V=\infty$.

The dimensions of some vector spaces
$\operatorname{dim} \mathbb{R}^{m}=$
$\operatorname{dim} \mathcal{P}=$
$\operatorname{dim} \mathcal{P}_{n}=$
$\operatorname{dim} M_{m, n}(\mathbb{R})=$

Dimension

- Let V be a vector space. If V has a basis with a finite number n elements, we say that n is the dimension of V. In this case, we say V is finite dimensional, and we write $\operatorname{dim} V=n$. If V does not have a finite basis, we say that V is infinite dimensional, and we write $\operatorname{dim} V=\infty$.
- The dimensions of some vector spaces:
$\operatorname{dim} \mathbb{R}^{m}=$
$\operatorname{dim} \mathcal{P}=$
$\operatorname{dim} \mathcal{P}_{n}=$
$\operatorname{dim} M_{m, n}(\mathbb{R})=$

Dimension

- Let V be a vector space. If V has a basis with a finite number n elements, we say that n is the dimension of V. In this case, we say V is finite dimensional, and we write $\operatorname{dim} V=n$. If V does not have a finite basis, we say that V is infinite dimensional, and we write $\operatorname{dim} V=\infty$.
- The dimensions of some vector spaces:
$\operatorname{dim} \mathbb{R}^{m}=m$
$\operatorname{dim} \mathcal{P}=$
$\operatorname{dim} \mathcal{P}_{n}=$
$\operatorname{dim} M_{m, n}(\mathbb{R})=$

Dimension

- Let V be a vector space. If V has a basis with a finite number n elements, we say that n is the dimension of V. In this case, we say V is finite dimensional, and we write $\operatorname{dim} V=n$. If V does not have a finite basis, we say that V is infinite dimensional, and we write $\operatorname{dim} V=\infty$.
- The dimensions of some vector spaces:
$\operatorname{dim} \mathbb{R}^{m}=m$
$\operatorname{dim} \mathcal{P}=\infty$
$\operatorname{dim} \mathcal{P}_{n}=$
$\operatorname{dim} M_{m, n}(\mathbb{R})=$

Dimension

- Let V be a vector space. If V has a basis with a finite number n elements, we say that n is the dimension of V. In this case, we say V is finite dimensional, and we write $\operatorname{dim} V=n$. If V does not have a finite basis, we say that V is infinite dimensional, and we write $\operatorname{dim} V=\infty$.
- The dimensions of some vector spaces:
$\operatorname{dim} \mathbb{R}^{m}=m$
$\operatorname{dim} \mathcal{P}=\infty$
$\operatorname{dim} \mathcal{P}_{n}=n+1$
$\operatorname{dim} M_{m, n}(\mathbb{R})=$

Dimension

- Let V be a vector space. If V has a basis with a finite number n elements, we say that n is the dimension of V. In this case, we say V is finite dimensional, and we write $\operatorname{dim} V=n$. If V does not have a finite basis, we say that V is infinite dimensional, and we write $\operatorname{dim} V=\infty$.
- The dimensions of some vector spaces:
$\operatorname{dim} \mathbb{R}^{m}=m$
$\operatorname{dim} \mathcal{P}=\infty$
$\operatorname{dim} \mathcal{P}_{n}=n+1$
$\operatorname{dim} M_{m, n}(\mathbb{R})=m n$

